“All our dreams can come true- if we have the courage to pursue them.”

Mr Erastus Kimani Ndekele presenting his PhD Proposal to the school academic Board

Davis Bundi defended his thesis on: Social Network Analysis for Credit Risk Modelling

Dr F.Njui (Left) with statistics students before presentation.

- 1 of 8
- ››

Degree Code: | I07 |

Degree Name: | BACHELOR OF SCIENCE IN ACTUARIAL SCIENCE |

Degree Type: | BACHELOR |

Degree Duration: | 4 |

Degree Description: | Click to View |

This course is designed to provide broad training in the basic mathematics underlying the operation of private and social insurance and employee benefit plans.In addition the course units are organized to assit the students to prepare for sevaral examination of the faculty of Actuaries ,the casualty Actuarial society and the society of Actuaries | |

Degree Courses: |
View |

**DEGREE REGULATIONS**

Actuarial Profession | View Details | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Actuaries are business professionals who apply their knowledge of mathematics, probability, statistics and risk theory, to real-life financial problems involving future uncertainty. These uncertainties are usually associated with life insurance, property and casualty insurance, annuities, pension or other employee benefit plans, or providing evidence in courts of law, on the value of lost future earnings. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Course Description | View Details | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Course Description | View Details | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

First Year Actuarial Science Courses SAC 101: Introduction to Actuarial Science SAC 102: Fundamentals of Actuarial Mathematics I SAC 101: Introduction to Actuarial Science Elementary mathematics, statistics and multistate models. Principles of mathematics of finance, life contingencies, risk assessment and management; practice of investments, life insurance, general insurance and retirement provision; and current topics. The course culminates by addressing questions concerning professionalism and what it is to be an actuary. Pre-requisite: None. SAC 102: Fundamentals of Actuarial Mathematics I Various rates of simple and compound interest, present and accumulated values based on these, annuity functions and their application to amortisation, sinking funds and bond values; depreciation methods; introduction to life tables, life annuity and lifeinsurance values. Pre-requisites: SAC 101, SMA 101. Statistics courses STA 101: Introduction to Probability and Statistics STA 121: Programming Methodology STA 122: Computational Methods and Data Analysis I Mathematics Courses SMA 101: Basic Mathematics SMA 103: Calculus I SMA 104: Calculus II SMA 106: Calculus III Second year Actuarial Science Courses SAC 201: Financial Mathematics I SAC 202: Fundamentals of Actuarial Mathematics II SAC 203: Principles of Economics I SAC 204 : Principles of Operations Research SAC 201: Financial Mathematics I Cash flow models for financial transactions, compound interest and discounting; present values and accumulation of streams of payments, nominal and effective rates of interest and discounts through standard compound functions; solving equations of value for implied rate of interest; discounted cash flow techniques in project appraisal; consumer credit; capital redemption contracts and annuity certain. Pre-requisite: SAC 102. SAC 202: Fundamentals of Actuarial Mathematics II The single decrement model and calculations based on it; the stationary population model; present values and accumulations of stream of payments based on a single decrement model; equation of value for payments based on a single decrement model; annuity and assurance commutation functions and their relationships; assurance and annuity contracts; product pricing, reserving, surrender values, emergence of profit. Pre-requisite: SAC 102. SAC 204: Principles of Operations Research Survey of continuous optimisation problems; unconstrained optimisation problems and methods of solution; introduction to constrained optimisation. Linear Programming: formulation of LP problems, graphical solution of simple LPs; the simplex algorithm, duality and economic interpretation; post optimality/sensitivity analysis. Decision analysis: decisions under risk, decision trees, decisions under uncertainty. Markov decision processes and dynamic programming. Project scheduling; probability and cost considerations in project scheduling; project control, critical path analysis. Integer programming. Queuing models: types of queues, queues with combined arrivals and departures; queues with priorities of service. Stochastic simulation: role of random numbers; simulation experiments; Monte Carlo calculus. Pre-requisites: STA 101, SMA 209. SAC 203: Principles of Economics I Economics as a science, the scope of economics. Introduction to microeconomics. Demand and supply analysis; effect of controls on prices and supply; elasticity of demand and supply, production factors, cost analysis. Utility theory and consumer behaviour. Analysis of insurance problems in terms of utility. Market forms and income distribution, general equilibrium theory. The theory of firms. Pre-requisite: SMA 104. SAC 204: Principles of Operations Research Survey of continuous optimisation problems; unconstrained optimisation problems and methods of solution; introduction to constrained optimisation. Linear Programming: formulation of LP problems, graphical solution of simple LPs; the simplex algorithm, duality and economic interpretation; post optimality/sensitivity analysis. Decision analysis: decisions under risk, decision trees, decisions under uncertainty. Markov decision processes and dynamic programming. Project scheduling; probability and cost considerations in project scheduling; project control, critical path analysis. Integer programming. Queuing models: types of queues, queues with combined arrivals and departures; queues with priorities of service. Stochastic simulation: role of random numbers; simulation experiments; Monte Carlo calculus. Pre-requisites: STA 101, SMA 209. Statistics Courses STA 201: Probability and Statistics I STA 202 Introduction to Statistical Inference STA 222: Introduction to time Series Analysis STA 224: Computational Methods and Data Analysis II Mathematics Courses SMA 201: Advanced Calculus SMA 206: Introduction to Analysis SMA 208: Ordinary Differential Equations I SMA 209: Elements of Linear Algebra Third year Actuarial Science Courses SAC 301: Actuarial Mathematics I SAC 302 : Actuarial Mathematics II SAC 303 : Principles of Economics II SAC 304: Financial Mathematics II SAC 305: Life Contingencies I SAC 306: Linear Models and Forecasting SAC 301: Actuarial Mathematics I A description of data collection suitable for examining past experience; calculation of exposed to risk and the derivation of crude decrement rates; monitoring actual against expected experience; methods of graduating experience rates; mortality variation with respect to social economic and regional factors, and the development of mortality experience during the 20th century; heterogeneity within a population; the main standard mortality tables and the adjustment to have regard to current and projected future experience; risk classification, underwriting and allowing extra mortality risk. Pre-requisites: STA 202, SAC 102. SAC 302: Actuarial Mathematics II Multi-state and multiple decrement models; problems of emerging costs; present and accumulated values allowing for decrements; equation of value problems for single life; unit sickness functions; introduction to functions involving more than one life; introduction to valuation of pension fund benefits and contribution; and profit-testing of insurance products. Pre-requisites: SAC 202, SAC 301. SAC 303: Principles of Economics II Introduction to macro economics and the role of government in economics. Public sector finance and taxation. National income measures; the circular flow of income; the multiplier and accelerator; aggregate demand and supply. Government fiscal policy and its effects. Government monetary policy and its effects. The money supply and credit creation by banking system. The major factors affecting unemployment, inflation, economic growth. Monetarist and Keynesian approaches. International trade, exchange rates and the balance of payments. Pre-requisite: SAC 203. SAC 304: Financial Mathematics II Introduction to asset types and securities markets; valuation of securities, effect of income and capital gain tax. Interest and discount. Force of interest; yield curves, discounted mean terms, matching and immunisation. Investment risk, stochastic interest and discount interest rate models; risk and return theory; market models; portfolio theory, capital asset pricing model, random walk model. Pre-requisites: SAC 201, SAC 301. SAC 305: Life Contingencies I Survival distributions and life tables. Construction of mortality, sickness, multiple decrement and other similar tables for graduated data. Determination of the probability and monetary functionsbased on mortality , sickness, multiple decrement and other similar rates. Values for premiums for single life annuities and assurances. Determination of policy values, surrender values and paid-up policy values. Mathematical models of actuarial reserving. Introduction to the design of unit linked products and introduction to profit testing methods. Use of the stationary population model. Pre-requisite: SAC 202. Statistics Courses STA 301: Probability and Statistics II STA 305: Probability Modelling STA 318: Statistical Inference I STA 322: Computational Methods and Data Analysis III Fourth year Actuarial Science Courses SAC 401: Mathematics of Demography and Graduation SAC 402: Survival Models SAC 403: Risk Mathematics SAC 404: Computational Finance SAC 405: Principles of Financial Management SAC 406: Actuarial Theory of Pension Funds SAC 407: Life Contingencies II SAC 420: Project in Actuarial Science SAC 401: Mathematics of Demography and Graduation Collection of demographic statistics, sources of errors and their corrections, measures of mortality and fertility. Construction of life tables from large databases such as census data. Analysis of experience data. Estimation of mortality and other decremental rates. Graduation methods and their applications: moving weighted average, Bayesian, parametric and smooth-function interpolation methods; statistical considerations; two dimensional graduation; tests of graduation. Pre-requisites: SAC 301, SAC 306. SAC 402: Survival Models The nature and properties of survival models, including both parametric and tabular models. Specification of survival/transition models. Estimation of complete and incomplete life times. Evaluation of estimators from sample data; valuation schedule exposure formulas. Numerical methods for multiple state models. Comparison of experiences. Application to assurance contracts/annuity contracts and PHI contracts. Future loss, principles of premium and reserves. Pre-requisites: STA 301, STA 305, SAC 305. SAC 403: Risk Mathematics Classical approaches to risk including the insurance principle and the risk-reward trade off. Risk models, review of probability, Bachelier and Lundburg models of investment and loss aggregation. Fallacy of time diversification and its generalisation. Loss distributions, geometric and Brownian motion and the compound Poisson process. Modelling of individual losses which arise in a loss aggregation process. Distributions for modelling size loss; statistical techniques for fitting data. Credibility theory. Economic rationale for insurance, problems of adverse selection and moral hazard. Utility theory; ruin theory. Capital asset pricing model, Black-Scholes option pricing model. Application of risk theory. Pre-requisites: STA 301, STA 305. SAC 404: Computational Finance Computational methods in finance and financial modelling; interest rate models and interest rate derivatives; derivative securities; Black-Scholes theory; no-arbitrage and complete markets theory; Hull and White models; Heath-Jarrow-Morton models; Hedging and immunisation; the stochastic differential equations and martingale approach, multinomial tree and Monte Carlo methods, the partial differential equations approach, finite difference methods. Pre-requisites: SAC 303, SAC 304. Co-requisite: STA 406. SAC 407: Life Contingencies II Multiple life models; joint life, last survivor, contingent insurance:- values of premiums for multiple life annuities and assurances and reversionary annuities and compound statuses. Multiple decrement models: disability, withdrawal, retirement etc and reserving models for life insurance. The control cycle. Introduction to the stochastic approach to life and other contingencies. Pre-requisites: SAC 305, STA 301, STA 305. SAC 420: Project in Actuarial Science The project is undertaken during the second semester in the fourth year of study and is equivalent to one course unit. A satisfactory report must be completed, marked by both the students supervisor(s) and the external examiner, and presented in a final oral examination. The project shall be graded independently out of a maximum of 100 marks distributed as follows: 70% for project report and 30% for oral presentation. SAC 405: Principles of Financial Management Objective of financial management. The annual financial statements; content, interpretation and application for planning and control. Budgets as a management tool. The time value of money, risk and return. Company structure and financing. Basic principles of taxation. Different types of taxation. The role of the main institutions in financial markets. Basic principles of group accounts. Calculation and use of accounting ratios. Limitations of company accounts. Pre-requisite: None. SAC 406: Actuarial Theory of Pension Funds Principles of pension funds. Mathematical models for: retirement income, retiree medical benefits, disability benefits and survivor benefits. Computer applications, simulation. Guarantees and options. Principles of pension valuation: actuarial cost methods, asset valuation methods, actuarial assumptions, gain and loss analysis. Pre-requisite: SAC 302. SAC 407: Life Contingencies II Multiple life models; joint life, last survivor, contingent insurance:- values of premiums for multiple life annuities and assurances and reversionary annuities and compound statuses. Multiple decrement models: disability, withdrawal, retirement etc and reserving models for life insurance. The control cycle. Introduction to the stochastic approach to life and other contingencies. Pre-requisites: SAC 305, STA 301, STA 305. SAC 420: Project in Actuarial Science The project is undertaken during the second semester in the fourth year of study and is equivalent to one course unit. A satisfactory report must be completed, marked by both the students supervisor(s) and the external examiner, and presented in a final oral examination. The project shall be graded independently out of a maximum of 100 marks distributed as follows: 70% for project report and 30% for oral presentation. Statistics Courses STA 406: Applied Stochastic Processes STA 419: Statistical Inference II | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

View Details | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Course Duration | View Details | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

The complete course requires 8 semesters each of 15 weeks. Flexible registration rules allow students to control their own pace of progress through the programme. The minimum number of units a student may take per semester is three. The total number of units required in the entire course is 44 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Course Structure | View Details | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

The course structure provides for three distinct categories of students: Double mathematics, mathematics major and mathematics minor. In each case the student must take all the prescribed core units. In the fourth year of study a double mathematics student may specialise in any of the five areas: Pure Mathematics, Applied Mathematics, Statistics, Operations Research or Actuarial Mathematics by judiciously selecting the elective courses. In the first year of study, a candidate is required to take the two core units: SAC 101 and SAC 102, plus the following Statistics and Mathematics course units: STA 101, STA 121, STA 122, SMA 101, SMA 103, SMA 104 and SMA 106. In the second year of study, a candidate is required to take all the four core units: SAC 201, SAC 202, SAC 203 and SAC 204 plus the following Statistics and Mathematics course units: STA 201, STA 202, STA 222, STA 224, SMA 201, SMA 206, SMA 208 and SMA 209. In the third year of study, a candidate is required to take all the six core units: SAC 301, SAC 302, SAC 303, SAC 304, SAC 305 and SAC 306 plus the following statistics units: STA 301, STA 305, STA 318, and STA 322. In the fourth year of study, a candidate is required to take all the eight core units: SAC 401, SAC 402, SAC 403, SAC 404, SAC 405, SAC 406, SAC 407 and SAC 420; plus the following two Statistics course units: STA 406 and STA 419. Additional units may be taken with the approval of the department and the consent of the dean of the Faculty of Science. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Credit Transfers & Exemptions | View Details | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

- A candidate may be exempted from some course units and credit transferred from approved institutions, subject to the following conditions.
- Request for exemption should be made in writing, on admission, addressed to the Dean of the Faculty of Science and must be accompanied by officially endorsed supporting documents including the institutions syllabuses for the relevant courses.
- Satisfactory performance in applicable examinations in the relevant courses.
- Payment of appropriate exemption fees.
- No candidate shall be exempted from more than one third of the total number of units required in the course.
- A candidate may be required to sit and pass applicable University of Nairobi examinations in the relevant course units, provided they have paid the appropriate examinations fees.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Data Analysis | View Details | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

This is a distinctive feature of the training programme. It consists of a series of practical exercises for each of which students write a report and take part in a class discussion | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Entry Requirements | View Details | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

To be admitted into the degree of Bachelor of Science in Actuarial Science candidates must meet the minimum University and School of Mathematics entry requirements.
a) Mean grade B+ at KCSE plus at least grade B+ in Mathamatics. b) Diploma in Statistics or Diploma in Computer Studies. c) Diploma in Education , with Mathematics as a major subject. d) A-level :Two principal passes in Maths /Physics, Maths/Chem,Maths/Geog, Maths/Econ. e) A degree in a mathematical subject from a reconized university.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Introduction | View Details | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

The Mathematics Programme offers course units in Pure Mathematics, Applied Mathematics, Statistics, Operations Research and Actuarial Mathematics. For purposes of registration, mathematics may be regarded as two subjects. A student who registers for Mathematics both as a major as well as a minor teaching subject shall be considered to have registered for double mathematics.
The B.Sc. course is designed to provide broad training in the basic mathematics underlying the operations of private and social insurance and employee benefit plans. The course units are organised to assist the student to prepare for several examinations of the Faculty of Actuaries, the Casualty Actuarial Society and the Society of Actuaries | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Module II Entry Requirements | View Details | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Module II Fees | View Details | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Nature of actuaral work | View Details | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

- Insurance Companies: Valuing financial contracts and investing funds.
- Consultancy: Offering advice to occupational pension funds and employee benefit plans.
- Government Service: Supervising insurance companies and advising on the national insurance.
- Actuaries are also employed in the stock exchange, in industry, commerce and in universities.
To be successful, actuaries must have a definite liking for mathematics. Mathematical ability isnt the sole criterion for success. Actuaries must be able to handle the financial, administrative and human relations problems that occur in business
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Project Requirements | View Details | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

During the last semester of the course, all students undertake a supervised project. The type of work involved is a varying mixture of methodological development and data analysis. Students give a talk on their project and write a formal dissertation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Regulations | View Details | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

To be considered for the award of the degree of Bachelor of Science in Actuarial Science, a candidate shall normally have enrolled for courses over a period of not less than four academic years.
Each candidate must satisfy the requirements of the common under-graduate courses specified by the <?xml:namespace prefix = st1 ns = "urn:schemas-microsoft-com:office:smarttags" />School of Mathematics.
During each academic year, a candidate must satisfy the School of Mathematics regulations regarding the minimum number of units to be taken.
In the first year of study, a candidate is required to take the two core units: SAC 101 and SAC 102, plus the following Statistics and Mathematics course units: STA 101, STA 121, STA 122, SMA 101, SMA 103, SMA 104 and SMA 106.
In the second year of study, a candidate is required to take all the four core units: SAC 201, SAC 202, SAC 203 and SAC 204 plus the following Statistics and Mathematics course units: STA 201, STA 202, STA 222, STA 224, SMA 201, SMA 206, SMA 208 and SMA 209.
In the third year of study, a candidate is required to take all the six core units: SAC 301, SAC 302, SAC 303, SAC 304, SAC 305 and SAC 306 plus the following statistics units: STA 301, STA 305, STA 318, and STA 322.
In the fourth year of study, a candidate is required to take all the eight core units: SAC 401, SAC 402, SAC 403, SAC 404, SAC 405, SAC 406, SAC 407 and SAC 420; plus the following two Statistics course units: STA 406 and STA 419.
Additional units may be taken with the approval of the department and the consent of the dean of the School of Mathematics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Tution | View Details | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

The teaching is organised via a combination of lectures, compulsory reading, laboratories and homework. Class attendance is required. Courses are taught in English. Examinations are held at the end of every semester. |

Level : 1 | |||

Semester: Non Specified | |||

Course Code |
Course Name |
Course Hours | |

CCS 004 | Law In Society | View Description | |

| |||

CCS 008 | Elements Of Philosophy | View Description | |

| |||

SAC 101 | Introduction To Actuarial Science | View Description | |

| |||

SAC 102 | Fundamentals Of Actuarial Mathematics | View Description | |

Fundamentals Of Actuarial Mathematics Description | |||

SMA 101 | Basic Mathematics | View Description | |

| |||

SMA 103 | Calculus | View Description | |

| |||

SMA 104 | Calculus | View Description | |

| |||

SMA 106 | Calculus | View Description | |

| |||

STA 101 | Introduction To Probability And Statistics | View Description | |

| |||

STA 121 | Programming Methodology | View Description | |

| |||

STA 122 | Computational Methods And Data Analysis | View Description | |

| |||

Level : 2 | |||

Semester: Non Specified | |||

Course Code |
Course Name |
Course Hours | |

SAC 201 | Financial Mathematics | View Description | |

| |||

SAC 202 | Fundamentals Of Actuarial Mathematics | View Description | |

Fundamentals Of Actuarial Mathematics Description | |||

SAC 203 | Principles Of Economics | View Description | |

Principles Of Economics Description | |||

SAC 204 | Principles Of Operations Research | View Description | |

Principles Of Operations Research Description | |||

SMA 201 | Advanced Calculus | View Description | |

| |||

SMA 206 | Introduction To Analysis | View Description | |

| |||

SMA 208 | Ordinary Differential Equations | View Description | |

| |||

SMA 209 | Elements Of Linear Algebra | View Description | |

| |||

STA 201 | Probability And Statistics | View Description | |

| |||

STA 202 | Introduction To Statistical Inference | View Description | |

| |||

STA 222 | Introduction To Time Series Analysis | View Description | |

| |||

STA 224 | Computational Methods And Data Analysis | View Description | |

| |||

Level : 3 | |||

Semester: Non Specified | |||

Course Code |
Course Name |
Course Hours | |

SAC 301 | Actuarial Mathematics | View Description | |

Actuarial Mathematics Description | |||

SAC 302 | Actuarial Mathematics | View Description | |

Actuarial Mathematics Description | |||

SAC 303 | Principles Of Economics | View Description | |

Principles Of Economics Description | |||

SAC 304 | Financial Mathematics | View Description | |

Financial Mathematics Description | |||

SAC 305 | Life Contingencies | View Description | |

Life Contingencies Description | |||

SAC 306 | Linear Models And Forecasting | View Description | |

| |||

STA 301 | Probability And Statistics | View Description | |

| |||

STA 305 | Probability Modelling | View Description | |

| |||

STA 318 | Statistical Inference | View Description | |

| |||

STA 322 | Computational Methods And Data Analysis | View Description | |

| |||

Level : 4 | |||

Semester: Non Specified | |||

Course Code |
Course Name |
Course Hours | |

SAC 401 | Mathematics Of Demography & Graduation | View Description | |

Mathematics Of Demography & Graduation Description | |||

SAC 402 | Survival Models | View Description | |

Survival Models Description | |||

SAC 403 | Risk Mathematics | View Description | |

Risk Mathematics Description | |||

SAC 404 | Computational Finance | View Description | |

Computational Finance Description | |||

SAC 405 | Principles Of Financial Management | View Description | |

Principles Of Financial Management Description | |||

SAC 406 | Actuarial Theory Of Pension Funds | View Description | |

Actuarial Theory Of Pension Funds Description | |||

SAC 407 | Life Contingencies | View Description | |

Life Contingencies Description | |||

SAC 420 | Project In Actuarial Science | View Description | |

Project In Actuarial Science Description | |||

STA 406 | Applied Stochastic Processes | View Description | |

| |||

STA 419 | Statistical Inference | View Description | |

| |||

Course Description | Download |

Course Description | Download |

COURSE DESCRIPTIONS | Download |

COURSE DESCRIPTIONS | Download |

COURSE DESCRIPTIONS | Download |

COURSE DESCRIPTIONS | Download |

COURSE DESCRIPTIONS | Download |

School of Mathematics, CBPS College.

P. O. Box 30197 - 00100

Tel: 254-02-4445751.

Mobile no :0780-834766.

Email: maths@uonbi.ac.ke.

twitter:@uon_maths

UoN Website | UoN Repository | ICTC Website

Copyright © 2017. ICT WebTeam, University of Nairobi