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Abstract 
 
The first case of COVID-19 was reported in Kenya in March 2020 and soon after non-
pharmaceutical interventions (NPIs) were established to control the spread of the disease.  
The NPIs consisted, and continue to consist, of mitigation measures followed by a period of 
relaxation of some of the measures.  In this paper, we use a deterministic mathematical 
model to analyze the dynamics of the disease, during the first wave, and relate it to the 
intervention measures.  In the process, we develop a new method for estimating the disease 
parameters.  Our solutions yield a basic reproduction number, R0 = 2.76, which is consistent 
with other solutions.  The results further show that the initial mitigation reduced disease 
transmission by 40% while the subsequent relaxation increased transmission by 25%.  We 
also propose a mathematical model on how interventions of known magnitudes collectively 
affect disease transmission rates.  The modelled positivity rate curve compares well with 
observations. If interventions of unknown magnitudes have occurred, and data is available 
on the positivity rate, we use the method of planar envelopes around a curve to deduce the 
modelled positivity rate and the magnitudes of the interventions.  Our solutions deduce 
mitigation and relaxation effects of 42.5% and 26%, respectively; these percentages are 
close to values obtained by the solution of the SIRD system. Our methods so far apply to a 
single wave; there is a need to investigate the possibility of extending them to handle 
multiple waves. 

 

1 Introduction 
 
Coronavirus Disease of 2019 (COVID-19) is the disease caused by the novel coronavirus 

that appeared in Wuhan, China, in December 2019. The disease has since spread to all 

parts of the world and resulted in 103,513,141 confirmed infections with 2,237,247 deaths by 

31st January 2021 [1]. In Africa, the first reported case of COVID-19 was on 14th February 

2020, in Egypt [2]. It has since afflicted 47all countries in the continent and led to 3,585,676 

confirmed infections with 91,079 deaths to 31st January 2021 [1].  To control the spread of 

the disease, countries have introduced several non-pharmaceutical interventions (NPIs) in 

addition to strengthening health facilities and treatment regimes. The disease has wreaked 

havoc on the economies of most countries and transformed people’s lifestyles permanently. 
 
We briefly present pertinent biological information about COVID-19 and a related disease, 
influenza, popularly known as flu.  Our reference to influenza here will mean seasonal and 
not pandemic influenza.  In the early days of COVID-19 many people confused the disease 
with flu since they both yield almost identical symptoms.  On 11th February 2020, the virus 
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which causes COVID-19 was named “severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2” by the International  Committee on Taxonomy of Viruses (ICTV) [3]. The flu is 
caused by influenza virus types A, B and C.  SARS-CoV-2 and influenza viruses use 
different receptors to enter the host cell; the former uses the spike (S) protein for entry [4] 
while the latter uses the hemagglutinin (HA) protein [5]. Both viruses are spread through 
droplets released from the nose and mouth of an infected individual as they cough or sneeze 
[6].  Nevertheless, unlike influenza, it has been shown that COVID-19 may also be spread by 
the long-range airborne route at greater distances [7]. A critical determinant of the infectivity 

of these viruses is the concept of reproduction number, 0R , which represents the degree of 

transmissibility of the virus and provides a representation of how many people can be 
infected by one person infected with the virus, in a population where everyone is susceptible 

to the disease. In the early stages of the epidemic, the 0R  for COVID-19 was estimated to be 

2.2 – 2.5 [8]; since then most of the published estimates for 0R  lie in the range 2 – 3, with 

some as high as 6 and others as low as 1.9 [9,10].  For seasonal influenza, studies 

yielded 0R in the range 1.1 – 1.5 [11], suggesting that COVID-19 is more easily spread than 

seasonal influenza.  For both flu and COVID-19, it is possible to spread the virus at least one 
day before experiencing any symptoms.  Once an individual has flu, the person may be 
contagious for 5 – 7 days while for COVID-19 the person could be contagious for 10 – 14 
days; the number of days of staying contagious will depend on  the age of the patient, 
severity of the disease and whether there are other underlying medical conditions [12, 13].  
Comparison of mortality from flu and COVID-19 is generally problematic due to the 
differences in data collection: in most countries deaths from COVID-19 must be recorded 
while deaths from influenza do not have to be recorded and are usually estimated from 
prevalence [14].  Research is currently going on to determine more accurate ways of 
estimating mortality from COVID-19 but it is believed to be much higher than for seasonal flu 
[13, 14]. 
 

Mathematical models can be used to inform and provide health decisions during a disease 

outbreak; besides they can be used to predict and perform peak detection of infected cases 

in a particular country [15]. A variety of models have been applied towards understanding 

the dynamics of COVID-19 [16]. . These models can be broadly categorised into; Stochastic 

type models [17-19] and deterministic type  [15, 20]. In the deterministic model, the 

population is usually divided into various compartments, namely Susceptible (S), infectious 

(I), Recovered (R) and Dead (D).  Some models use all the compartments and are labelled 

SEIRD [21, 22]] while other models omit the Dead compartment and are SEIR [15, 23] or 

omit the exposed compartment and are SIRD [24 - 26] or end up with the basic SIR 

formulation by omitting the Exposed and Dead compartments [20, 27].  Irrespective of the 

number of compartments used above, models can be modified to include additional 

compartments like hospitalised, symptomatic, asymptomatic, among others [28 - 33]. In the 

context of deterministic models, are the so-called meta-population models which are capable 

of capturing the inherent heterogeneity of the populations, an aspect which cannot be done 

by compartmental models [16, 34].  In the early days of COVID-19 experts wondered if the 

disease would follow other virus pandemics and exhibit a second wave and possibly 
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subsequent waves.  Since then second waves have appeared in some countries on all 

continents; a few countries have even experienced third waves. This development has 

helped to promote mathematical modelling of the genesis and dynamics of second and 

subsequent COVID-19 waves [35 - 38].  In this paper we will use the SIRD model applied to 

a single wave. 

 

In addition to mathematical models for the analysis of COVID-19 dynamics, there have 

emerged mathematical models that address intervention measures designed to control the 

rate of spread of the disease. As a starting point for these models, it is important to have an 

understanding of the baseline dynamics and hence estimates of the parameters associated 

with the unmitigated disease, since they are essential to our planning for initial interventions. 

Two of these parameters are particularly useful, namely, the transmission rate, β(t), which is 

the number of contacts per person per unit time, and the basic reproduction number, R0, 

already defined earlier. In most situations, intervention commences almost immediately 

COVID-19 emerges and the baseline parameters are estimated later, using data collected 

from the period preceding any major mitigation measures. The main purpose of the 

intervention is to reduce the contact rate, hence the reproduction number, so that the peak of 

infection reaches a level that can be managed by the available healthcare facilities and 

personnel. The mathematical models can broadly be classified into two categories. In the 

first category, variables and parameters associated with interventions are incorporated into 

the system of differential equations and hence they directly influence disease variables and 

parameters [28 – 29, 31 – 33, 39 - 40].  Although they are mathematically rigorous and 

elegant, they lead to more parameters that must be estimated; in addition, they tend to 

account for the effect of only a few intervention measures, whereas the impacts of 

interventions arise from all the measures taken together. In the second category, the 

intervention measures collectively, or a subset of them, are deemed to affect the 

transmission rate only, yielding expressions for the transmission rate which are piecewise 

continuous functions involving exponential, logistic, linear or constant functions [21, 26, 37, 

42]. In this paper, we use the methods in the second category, since they are flexible and 

can easily be applied to develop scenarios, pending more rigorous investigation on the effect 

of the interventions. 

 
We present the paper according to the following outline.   

 In the next section we briefly describe the COVID-19 situation in Kenya and 
present the major NPIs and the timelines in which they were proposed.  

 In Section 3, the SIRD model equations and initial conditions are given.   

 In Section 4, we introduce a new method of estimating the parameters associated 
with the disease dynamics.  

 A description is given in Section 5 of a mathematical model for interventions that 
takes into consideration the fact that interventions lead to a reduction of 
transmission rate, in the case of mitigation, or increase in the transmission rate, 
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when some mitigation measures are lifted or when society violates prescribed 
mitigation regulations.   

 In Section 6.1 we present solutions of the SIRD model, taking into consideration 
the mitigation and relaxation timelines.  

 Section 6.2.1 presents the results of the effect of intervention measures of known 
magnitudes on the observed and predicted positivity rates.  

 Using the observed positivity rates, in Section 6.2.2, we apply the method of 
planar envelopes around curves to deduce the model positivity trajectory, 
together with the mitigation and relaxation magnitudes that lead to the observed 
positivity rates.  

 Finally, we give a few concluding remarks and recommendations in Section 7. 
 

2 COVID-19 in Kenya 
 

The rapidly spreading outbreak of the novel coronavirus in the African continent prompted 

the Kenya government to establish the National Emergency Response Committee on 

Coronavirus (NERC) on 28th February 2020 by Executive order. About 2 weeks later, the 

first case of COVID-19 in Kenya was confirmed on 13th March, 2020 [43] and has resulted in 

100,773 confirmed infections and 1,763 deaths to 31st January 2021 [44]. Due to the rapid 

increase in cases, the Government of Kenya instituted several measures designed to curb 

the spread of the disease, while, at the same time, providing economic support to individuals 

identified as vulnerable. COVID-19 has hurt the Kenyan economy and the livelihood of the 

residents, despite the commendable steps taken by the government to alleviate the suffering 

of citizens. Concern has been raised, however, on the declaration by public and private 

insurers requiring COVID-19 patients to share in the cost of their diagnosis and treatment. 

Given that the costs are beyond the reach of many Kenyans, there have been reports of 

patients not seeking medical help at health centres for fear of being burdened with large 

bills, which they and their families would be unable to pay. 

 

For our modelling, the strategies pursued can be divided into three periods, each with its 

distinct characteristics as outlined hereunder and also shown in Table 1. 

 
 
Period 1 (13 March to 8 April): Since COVID-19 was a novel disease, this period was 

spent in formulating policies and protocols on how to respond to it. A major decision was to 

immediately close learning institutions. Other mitigation measures were put in place, for 

instance: no overcrowding in public transport; social distancing and mask-wearing in public 

places; handwashing and sanitization at malls and supermarkets. There was low compliance 

and so a lot of time was spent appealing to residents to comply with the measures. In 

anticipation of the potential impact of the pandemic, the government introduced a tax break  

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted March 24, 2021. ; https://doi.org/10.1101/2021.03.17.21253626doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.17.21253626


5 | P a g e  

  

 
 PERIOD 1 PERIOD 2 PERIOD 3 

 13 March to 8 April 9 April to 8 June 9 June to 8 August 

CATEGORIES ACTIONS ACTIONS ACTIONS 

    

1. CONGREGATIONS    

Bars and Clubs Closed on 22 March Closed Closed 
Places of worship Closed on 22 March Closed Open from 6 July for 100 attendants 

   per session 

Funerals and Family 
gatherings 

Limited  numbers;  social  
distancing and hygiene 

Limited  numbers;  social  distancing 
and hygiene 

Limited  numbers;  social  distancing 
and hygiene 

    

Political and Social 
gatherings 

Banned Banned Banned 

Restaurants and Eateries Open for limited hours for takeaway Operate with social distancing and  Limited numbers; no alcohol from 31 

 meals hygiene July 

Work from home Compliance encouraged Compliance encouraged Compliance encouraged 

    

2. LEARNING 
INSTITUTIONS    

Schools Closed Closed Closed 

Tertiary Institutions Closed Closed Closed 

    
3. RESTRICTION  OF  

MOBILITY    

    
Cessation of Movement None For Nairobi, Mombasa, Kwale, Kilifi Lifted in 2 stages: 7 June and 7 July 

  from 6 April  
Curfew Country-wide overnight curfew from Country-wide overnight curfew still in Country-wide overnight curfew still in 

 27 March force force 
Lockdown None For Eastleigh, Old Town Mombasa & Lockdown lifted on 7 June 

  Mandera  
    

4. PREVENTION    
Covid-19 Regulations None Published; criminal offence to 

contravene  
Criminal offence to contravene 

    
Public social distancing Compliance encouraged Compliance mandatory Compliance mandatory 

Public mask-wearing Compliance encouraged Compliance mandatory Compliance mandatory 

Public Hygiene Compliance encouraged Compliance mandatory Compliance mandatory 

    

5. TRAVEL    
International air travel A few allowed initially, later all 

suspended 
Suspended To resume on 1st August 

    
Local air travel Suspended 2 April Suspended Resumed on 7th July 
Public transport (within the 
county) 

To operate with social distancing & To operate with social distancing & To operate with social distancing & 

 hygiene hygiene hygiene 

Public transport (inter-
county) 

To operate with social distancing & None to/from counties on cessation of To operate with social distancing & 

 hygiene movement hygiene 

    

6. ECONOMIC 
INCENTIVES    

Support for Vulnerable 
families 

Plans to support the vulnerable Money sent directly to vulnerable 
families 

Money sent directly to vulnerable 
families 

    

National   Hygiene   
Programme (Kazi Mtaani) 

Plans to support youth Payment to youth for restoring public Payment to youth for restoring public 

  hygiene hygiene 

General economic stimulus Announced Implemented Implemented 
 

 
Table 1: Strategies for mitigating COVID-19 in Kenya 
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to provide some relief to residents. Despite the enacted mitigation measures, in most places 
it was business as usual. This period, therefore, can safely be regarded as the time when 
covid-19 was still unmitigated. Hence our model treats this period as the baseline, since no 
significant impact of mitigation measures had been realised. 
 

Period 2 (9 April to 8 June). Due to the rapid increase in cases, and the public’s relaxed 

attitude to COVID-19, the government took a move to enforce the mitigation measures by 
enacting COVID-19 regulations whose contravention was a criminal offence [45]. It also 
published proto-cols to govern the operations of restaurants and eateries. To provide an 
economic incentive to a category of residents the government implemented two programmes 
to help the vulnerable and youth. The period can be regarded as one of the application of 
mitigation measures, despite attempts by a cross-section of society to flout the rules. 
Consequently, our model treats this period as that of mitigation. 
 
Period 3 (9 June to 8 August): Enforcement of the mitigation measures during Period 2 

had a devastating effect on the country’s economy and people’s livelihoods. Many industries 

and small businesses laid off workers or simply folded. Other establishments placed workers 

on half salary or gave leave without pay while waiting for the situation to stabilize. To ease 

the hardship being experienced, the government gradually relaxed some of the mitigation 

measures. There was discussion about opening learning institutions in September but the 

idea was shelved on based on the trend of the pandemic. Our model treats this period as 

that of gradual relaxation of control measures. 
 
 

Table 1 gives a summary of the major actions taken during each of the three periods. The 

information in this table was obtained from the Ministry of Health, Kenya [44] and 

Presidential Addresses on COVID-19 [46]. Most of the information was also available from 

Academia Kenya [47] and in the dailies. 

 
 
Figure 1 shows the trend of the 7-day moving averages of numbers and percentages of 

three para-meters, that is, infections, deaths and recoveries, from 13th March 2020 for 

numbers and 25th March 2020 for percentages, to 31st January 2021.  The percentages 

were of the numbers of daily observed variables relative to the daily number of people tested 

on that day.  It is argued, with some justification that more realistic percentages can be 

obtained by computing the percentages relative to test numbers lagged by a week or two, 

since people do not necessarily get infected, recover or die on the same day they are tested. 

 

In Figure 1(a), the infections increase gradually and reach a maximum in mid-July, with a 

positivity rate of just under 16%. The infections then decrease until early September when 

they begin to increase thus indicating the onset of the second wave, which peaked in early 

November with a positivity rate of about 18% and prompted fresh mitigation measures to be 

put in place from 4th November 2020.  Figure 1(b) shows that recoveries also follow the 

wave pattern of the infections but there exist considerable fluctuations, with significant 

spikes, possibly due to accumulated data not accounted for in previous days. The 

fluctuations and spikes can also be partly attributed to uncertainty in obtaining data on 
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recoveries from home-based care which was in effect from July 2020.  Figure 1(c) shows 

that the deaths also exhibit the wave pattern of the infections but they fluctuate considerably 

but are generally on the low side, with the 7-day averages not exceeding 25 in numbers or 

0.4 in percentages. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)   (b)                                                         (c) 
 
Figure 1: The 7-day moving averages of numbers and percentages of three variables, from 13th March 
2020 for numbers and 25th March 2020 for percentages, to 31st January 2021. 
    

3 SIRD model formulation 
 
 
In this article, we consider a SIRD mathematical model. We assume a homogeneous mixing 

in the population. At the time, t, the population is divided into four classes; Susceptible, 

infectious, recovered and the dead, denoted respectively by, S(t), I(t), R(t) and D(t), as shown 

in Figure 2  Since this is a new disease, there is no prior immunity, hence everybody is 

susceptible to COVID-19. Upon being infected with the disease, susceptible individuals 

move to the infectious class, from which they either recover or die from the infection.  

 

 

         

         I 
            

      SI              

 

            I 

 

Figure 2: Compartmental SIRD model. 

                 

We assume that the total population, N is constant over time. For simplicity we assume that 

the variables are already normalised on division by N such that 

 

S I 

R 

D 
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     ( ) ( ) ( ) ( ) 1S t I t R t D t       (1) 

     

In the presentation of our results, the variables will be given as convenient in terms of actual 

observed numbers or proportions or percentages or as fractions of the total population. 

          

The mathematical equations describing the movement of individuals in different 

compartments are given by: 

     /dS dt SI                (2a) 

     / ( )dI dt SI I                  (2b) 

     /dR dt I                         (2c) 

     /dD dt I                            (2d) 

The system in Equation (2) is solved subject to the initial conditions: S(0) = S0, I(0) = I0, R(0) 

= R0 and D(0) = D0, where S0, I0, R0 and D0, are the initial proportions of the Susceptible, 

Infectious, Recovered and Dead, respectively. At the very start of the epidemic, there is one 
infected individual so that I0 = 1/N.  At this stage there are no recoveries or deaths so that 
R0 = D0 = 0 and Equation (1) yields S0 = 1-1/N. The SIRD model has been applied to 
seasonal influenza [48 - 50] and COVID-19 [20, 24 – 26], among other publications. 
 

4  Parameter estimation 
 

To solve the system in Equation (2) subject to appropriate initial values, it is necessary to 

compute the parameters γ, β and δ. This is usually by use of optimization software [51 – 

53], preceded by specifying approximate values for the parameters, or the interval in which 

the parameter values lie, or by use of Monte-Carlo methods to select initial values of the 

parameters at random and facilitate computation of the optimum values using methods 

based on diverse mathematical concepts. The process sometimes is long and may require 

hundreds, if not thousands, of iterations. In this paper, we propose a new approach to 

determining initial estimates of the parameters.  
 
 
Observational or experimental values are usually available at discrete points in time 
denoted, t0, t1, t2, · · · , tmax, where tmax is the maximum time for which the disease data is 
available. Starting from the initial values, S(0) = S0, I(0) = I0, R(0) = R0 and D(0) = D0, we 
find that at the current iteration, tk, Equation (1) yields 
 

    1, 0,1,2, ,k k k k MS I R D k k         (3) 

 

where ( ), ( ), ( ) ( )
k k k k k k k k

S S t I I t R R t and D D t    and kM is the maximum number of 

time steps or nodes. 
 
 

Given the significance of infection in understanding the dynamics of the disease, data on 
the infections, Ik, is often available to a considerable degree of accuracy and reliability. 

Whereas data on the deceased, Dk, and the recovered, Rk, may be available, it is often less 
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reliable, particularly in countries with limited health facilities. In situations where only data 

on the infections is given, it is possible to estimate the recovered and deceased by 

integrating Equations (2c) and (2d) to yield: 

       

     
1 1k k k

R R I
 

                (4a) 

     
1 1k k k

D D I
 

                 (4b) 

 
where γ and δ are the recovery and death rates, respectively, and are to be estimated. 
 
 

From Equation (4a) using k = 1 yields 
1 0

R I , since 
0

0R  . Hence 
1

R  is dependent on the 

observed value
0

I .  Using k = 2, we conclude that  
2

R  is dependent on the observed values 

0 1
I and I . We can show that in general, kR  is dependent on the observed values 

0 1 2 1
, , , ,

k
I I I I


   .  Analogously, we can show that kD is dependent on the observed 

values
0 1 2 1
, , , ,

k
I I I I


   . Although the quantities Rk and Dk are not observed values, they are 

dependent on observed infections and, to meet our computational objectives, they are 
regarded as “observed recovered fraction” and “observed dead fraction”, respectively. 
Similarly, values of the susceptible fractions, Sk, are rarely availed, except in a highly 
controlled environment, for instance, a school setting [54]. Despite this, by solving for Sk in 

Equation (3), we obtain a value of the susceptible which is dependent on observed infections 
and will also be regarded as “observed susceptible fraction”. 
  
To illustrate our approach for estimating the parameters, we assume that the deceased 

values, Dk are given and the death rate, δ, is approximated by the Case Fatality Rate (CFR) 

or any other suitable method. Consequently, we consider Equations (2) and (4a) only and 

estimate γ and β.  Every disease has associated with it a number of days of recovery, i.e. the 

days for which the patient remains contagious after being diagnosed with the disease; the 

inverse of those days is the recovery rate, γ. For instance, the recovery days from influenza 

are on average 5 – 7 days [12 – 13]; hence   for influenza is on average 1/7 to 1/5. The 

recovery days from mild to moderate COVID-19 are on average 10-14 days [12 - 13]; hence 

 for this type of COVID-19 is on average 1/14 to 1/10. To begin our computation, we 

assume that the recovery days for COVID-19 do not exceed dM days, where dM is an integer 

that is large enough to preclude any medical evidence that a patient of COVID-19  could still 

be contagious beyond dM days, for instance 100.  Hence the recovery rate,  , will be in the 

interval (1/dM , 1).  We now establish grid point, or nodes, i , in the interval ( ,1)Md  such 

that  

    (1 / ,1), 1,2, ,
Mi M

d for i i      ,                 (5) 

 

where Mi  is the maximum number of node pertaining to  . 

 
At the time step k, insert γi in Equation (4a) and then Equation (4a) into Equation (3) to find 
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    1 , 1,2,3, ,k k k k ki MS I R D k k          (6) 

 
where ϵki is the error, at the grid point tk , associated with observation and also with the value 
γi  If ϵki is close to zero then γi is close to the recovery rate for the disease. 
 
The transmission rate, β(t), for COVID-19 is a finite non-negative number, and must 
therefore be such that 0 < β(t) < βM , where βM is a positive number and is chosen large 
enough to include the highest possible transmission rate of COVID-19. We then establish 
grid points, or nodes, βj , in the interval (0, βM) such that 
 

    (0, ) 1,2, ,j M Mfor j j        (7) 

where Mj is the maximum number of nodes pertaining to  . 

 
We now use γi from Equation (5) and βj from Equation (7) together with the value of δ 
estimated from CFR, to solve the system (2), at the time step k. This will yield values which 
we denote Sc, Ic, Rc and Dc, where the superscript signifies values from computation to 

distinguish them from observed values , , .
k k k k

S I R and D  Analogous to Equation (6), the 

values from computation satisfy 
 

   1 , 0,1,2, ,c c c c

k k k k kij MS I R D k k          (8) 

 
where ϵkij is the error, at the grid point tk , associated with observation together with the 
values γi and βj . If ϵkij is close to zero then γi and βj are close to the recovery and 
transmission rates, respectively. 
 
Subtracting Equation (6) from (8) yields 
 

 ( ) ( ) ( ) ( ) , 0,1,2, ,c c c c

k k k k k k k k k MS S I I R R D D k k            (9) 

 
where ϵk is the total error at the time step tk. We note that each of the terms in brackets on 

the LHS is the error in the corresponding variable. 
 
 
The disease variables are nonlinear functions of the parameters γi and βj , hence it is not 
advisable to compute the correlation coefficients between the computed (predicted) and the 
observed variables to determine how closely the computed and observed values agree. 
Hence we use an error metric based on the time average of the individual errors and we 
choose to minimize the error metric. There are a number of possible error metrics but we 
choose to use the Root Mean Square Error (RMSE), although we could also have used the 

Mean Absolute error (MAE) [55]. For RMSE we determine
i j
and   to obtain 

 

   
( , )

min ( ( ) ( ) ( )RMSE S RMSE I RMSE R RMSE D
 

                           (10) 

  
where for the variable X, 
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    2

1
( ) ( ) /

Mk c

k k Mk
RMSE X SQRT X X k


  

                          (11) 

 

Starting from initial values of 
i

  and 
j

  it is possible to institute search procedures that will 

lead to the minimum in Equation (10), for instance [51 – 53].  The amount of effort in 
reaching this minimum will depend on how close the initial values are to the actual solutions. 
To narrow down the intervals of the search, we use a different approach based on the fact 
that the disease parameters, as used in the formulations leading to Equation (2), are spatial 
and temporal averages. We begin by determining the maximum sum inside the curly 
brackets in Equation (10).  We then express the sum at each point as a percentage of this 
maximum sum; consequently, the minimum values will be associated with the least 
percentages. Thereafter, we  average the disease parameters within regions bounded by 
concentric circles whose radii are the percentages. The regions are expanded from the 
innermost circle, associated with the least percentage, to larger circles associated with 
higher percentages, while keeping track of the sum in Equation (10). Initially this sum is large 
but decreases as we expand the percentage of averaging; eventually the sum reaches a 
minimum and begins to increase again as the percentage of averaging continues to 
increase. The minimum in Equation (10) is at values of the parameters associated with the 
turning point. To ensure that we identify all the minima, it is important to start from the least 
percentage and proceed till 100%, or close to it. This way it will be possible to identify which 
minima are local and which one is global. The best that can be done with this averaging 
technique is to obtain intervals within which lie isolated values of γi and βj that lead to the 
suspected minimum of the error matrices in Equation (10). Thereafter, other search and 
optimization procedures can be applied to obtain more accurate parameter values, if need 
be [51 – 53]. Here again, we propose a slightly different approach: simply divide the interval 
so identified  into smaller subintervals to establish a denser network of grid points.  We then 

go through the computations leading to the sum in Equation (10) for all paired values of 
i

  

and 
j

 . This time, we use a procedure that searches for a minimum value from an array and 

identifies the associated 
i

  and 
j

 . The new subinterval, within which lie the appropriate
i

  

and 
j

 can again be divided into smaller subintervals and the process repeated until 

required accuracy in 
i

  and 
j

  is obtained. 

 

5  Modelling intervention 

 
In this paper we formulate an intervention model which leads to piecewise exponential 
functions for the transmission rate.  We assume that the recovery rate, , and the death 

rate,  , do not change during the interval of the intervention. Our model takes into account 
the fact that intervention not only leads to a reduction of the transmission rate, through 
mitigation, but can lead to a surge in the transmission rate, through relaxation of, or non-
compliance with, mitigation measures.  
 
 Let the daily events be at the time nodes denoted t0, t1, t2, · · · . Suppose intervention is 
initiated at the time node tk then there will be a difference in the transmission rate before and 
after tk . Let βb(t) be the transmission rate before, and up to, the time tk; the quantity βb(t) 
could be the result of baseline dynamics or it could be due to the dynamics from some 
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immediately preceding intervention. Associated with βb(t) is a reproduction number which we 
label Rb(t).  If this Rb(t) is due to baseline dynamics then it is the basic reproduction number 
R0 ; otherwise it is an effective number, Re, 
 
We now assume that for any time t > tk , the rate of decrease of the transmission rate, as a 

result of intervention measures, is proportional to the transmission rate at that time. This 

yields the following general solution for the effective transmission rate; 

 

     
( )

( ) ,kb t t

kt Ae t t 
               (12) 

 
The main objective is to gradually change the transmission rate at the time of intervention, 
namely, βb(tk), by a fraction c so that the effective transmission rate at a future time, say tk+m, 
where m > 0, becomes (1 − c)βb(tk). To determine the constants A and b in Equation (12), we 
impose the conditions 
 

   ( ) ( ) ( ) (1 ) ( )k b k k m b kt t and t c t                   (13) 

 
We need to consider what happens after the objective of the intervention has been met, 
namely for t > tk+m . It is reasonable to assume that after the objective of a particular 
intervention has been met, the transmission rate will remain constant at the level already 
achieved, until another intervention takes place. The choice of m which enables this to be 

achieved will depend on the implementation goals. When an intervention takes place on day 
tk, the optimum transformation of the transmission rate, hence of the reproduction number 
also, does not occur instantly but takes place say m days later, that is, at the time tk+m, where 
m > 0. In fact it is a common observation that following an event that spreads COVID-19, an 
increase in infections is usually observed about 7 to 14 days later. It is, therefore reasonable 
to select m in, or close to, the interval 7 to 14 days. Using Equation (13) and the explanation 
for what happens beyond tk+m, we obtain the following expression for the   transmission rate, 

before and after the intervention. 

    
( )

( ),

( ) ( ) ,

(1 ) ( ),

b k

g t

b k k k m

b k k m

t t t

t t e t t t

c t t t



 









  

 







                        (14) 

where 

         ( ) ( )ln(1 ) / ( )
k k k m

g t t t c t t


               (15a) 

 

      1c                          (15b) 

 
The last equation in Equation (14) gives the optimum value of the effective transmission rate 
that will be achieved due to intervention. At any given time, t, the effective reproduction 
number, Re, is computed from 

     ( ) / ( )
e

R t                              (16) 
 
 
From the last equation in Equation (14) we note that when 0 < c < 1, then β(tk+m) < βb(tk) ; 

this corresponds to the intervention being a mitigation, since it yields a smaller future 
transmission rate which represents a reduction by a fraction c of the transmission rate at the 
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time of intervention before mitigation occurred; we call the quantity 100c the “percent 
mitigation”. On the other hand when c < 0 then β(tk+m) > βb(tk); this corresponds to the 

intervention being a relaxation of the existing mitigation measures since it yields a larger 

future transmission rate which represents an increase by a fraction c of the transmission 

rate at the time of intervention; we call 100 c  the “percent relaxation”. In computing Re 

the values of γ and   remain fixed and only the value of β changes. Consequently the 

percentage changes in β, as indicated above, also apply to Re. Previous researchers 

restricted c to the interval [0 , 1]; by Equation (15b), we extend c to negative values to 

account for spikes in the dynamics that may occur as a consequence of relaxing mitigation 

measures. 

 
 
The parameter c is important for this type of intervention modelling and yet only two of its 

values are obvious, namely, c = 0 implies the absence of any control and c = 1 is the unlikely 

scenario of absolute control where there is no disease transmission. The other values of c 

are more complicated to determine. The most thorough method is to identify all the 

interventions that impact on the disease transmission, hence contribute to c, and assign 

weights to their impacts. The parameter c can then be computed as the weighted average of 

the impacts. Groups of the impacts could then be isolated to obtain their relative contribution 

to the decrease or increase in the disease transmission. Table 1 lists some of the 

intervention measures and related effects that could be taken into account in this exercise: 

mask-wearing, closure of learning institutions, curfews, travel restrictions, limitations on 

gatherings, restrictions on operations of bars and restaurants, economic activities, social 

distancing, availability of PPEs and hospital space etc. To assess the impact of all these 

factors on disease transmission requires a truly collaborative effort involving a 

multidisciplinary team.  Once the value of c is estimated, it can be described in simple terms 

for public health implementation. For instance, two intervention scenarios are mentioned in 

[23], namely: moderate lockdown, regarded as the intervention which reduces transmission 

by 25% during lockdown followed by transmission at 90% of the pre-lockdown value; and 

hard lockdown, regarded as the intervention which reduces transmission by 44% during 

lockdown followed by transmission at 90% of the pre-lockdown value. In terms of our 

formulation, moderate lockdown is equivalent to mitigation with c = 0.25 followed by 

relaxation with c = −2.6 while hard lockdown is equivalent to mitigation with c = 0.44 followed 

by relaxation with c = −1.05. 

 

6 Results 
 

The models were developed and computations carried out, per timelines associated with 

government and public response to COVID-19, as specified in Section 2. We first present 

results for solutions of the SIRD system using the new method described in Section 4; then 
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we present results for the intervention model described in Section 5. COVID-19 data was 

obtained from the following sources: Worldometer [1], Ministry of Health, Kenya [44], World 

Health Organization [56], and Our World in Data [57].   

 

6.1 Solution of SIRD system across different intervention periods 
 

In this section we solve the system of equations using the methods described in Section 4 

for the periods identified in Section 2: Period 1 (Baseline), Period 2 (Mitigation) and Period 3 

(Relaxation). The objective is to determine whether there are any differences in the disease 

parameters among the three periods.  In Table 2 we list the values of parameters and initial 

conditions used during various periods of computation. 

 
            Table 2: Parameters and initial conditions at baseline, mitigation and relaxation periods 

 

For all the periods, we assumed that covid-19 patients are unlikely to be contagious after 

100 days, so that dM = 100, hence (0.01,1)  .  We also assumed that (0,1)  for covid-

19, since the choice of a larger upper limit would not make any difference to the results.  To 

obtain the initial estimates of  and  , by the averaging method described in the last 

paragraph of  Section 5, the intervals (0.01 , 1), for ,   was divided into 1000 subintervals 

while the interval and (0 , 1), for   , was divided into 750 subintervals,  and a node located 

in the middle of each subinterval. On identification of the appropriate initial estimates, the 

Quantity Symbol  Baseline 

Value 

Mitigation 

Value 

Relaxation 

Value 

Population N 5586 100683 353727 

Initial Infections I(0) 0.1790190E-04 0.9932163E-05 0.2827039E-05 

Initial Recovered R(0) 0 0 0 

Initial Deaths D(0) 0 0 0 

Initial Susceptible  S(0) 0.999982098 0.999990067 0.999997173 

Number of days ------ 27 88 149 

Maximum time nodes 
M

k  27 88 149 

Maximum days of 

recovery 
M

d  100 100 100 

Least value of  (=1/dM) 
M

  0.01 0.01 0.01 

Subintervals for   ------ 1000 1000 1000 

No. of nodes for   
M

i  1000 1000 1000 

Largest value of   
M

  1 1 1 

Subintervals for   ----- 750 750 750 

No. of  nodes for   
M

j  750 750 750 
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subintervals in which they lay were each further divided into 400 subintervals, to establish 
400 nodes, and the MIN function in MATLAB was used to solve Equation (10).  Further 
subdivision was not required, since the values obtained agreed to 5 significant figures. 
 

(a) Baseline Solutions 
 
 

For results involving the baseline, computation is carried out from 13th March to 8th April, 

2020, with projections made till stability is reached. Use is made of the parameters and initial 

conditions given in the baseline column of Table 2. Computed values of  and  , are given, 

to 5 significant figures,  in the baseline row of Table 3.  Also given are related parameters 

and results. The basic reproduction number is 2.76 which is consistent with results from 

other computations, e.g.  [23].  

 

 γ CFR (δ) β R 1/γ 
Peak 
infection RMSE sum 

Baseline 0.051750 0.015 0.18448 2.7638 19.3 0.270 0.00255 

Mitigation 0.055294 0.0344 0.14852 1.6558 18.0 0.0916 0.000570 

Relaxation 0.015099 0.0297 0.092675 2.0687 66.2 0.1655 0.000804 
 
 
Table 3: Parameters and related quantities for different disease periods. Recovery rate is denoted γ,δ 
denoted case-fatality proportions(CFR), β, transmission rate and 1/γ denotes recovery days, R=R0, 
basic reproduction number (for Baseline) and R=Re, effective reproduction number (for mitigation and 

relaxation). 
 

Figure 3(a) shows the observed and computed cumulative infection numbers and 

percentages during the baseline period; the agreement is quite good. Although results are 

available for the parameters S, I, R and D, we present results only for I, since it is the most 

important variable we use in our subsequent analyses.  

 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b)     (c) 
 

Figure 3: Observed and computed cumulative infected proportions and numbers at baseline (3(a)), 

observed and computed cumulative infected proportions and numbers up to mitigation period (3(b)) 

and Observed and computed cumulative infected proportions and numbers up to relaxation period 

(3(c)). 
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Figure 4 shows the graphs for infection percentages obtained using data up to the end of the 

baseline, mitigation and relaxation periods. The graph labelled baseline dynamics shows the 

infection percentages associated with the baseline data. It achieves a peak of approximately 

27% in late May 2020, thus indicating the way the dynamics would have proceeded if 

mitigation measures were not put in place on 8th April 2020.  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4: Infection proportions during baseline, mitigation and relaxation periods. 
 

(b) Mitigation Solutions 

 

For results involving mitigation, computation is carried out from 13th March to 8th June. The 

objective of the computation is to find out whether the inclusion of data during the mitigation 

period made any difference in the rate of transmission of the disease and the dynamics of 

the infection. Use is made of the parameters and initial conditions given in the mitigation 

column of Table 2. Computed values of  and  , are given, to 5 significant figures,  in the 

mitigation row of Table 3.  Also given are related parameters and results. The results 

indicate that the reproduction number was reduced by about 40% from 2.76 at the baseline 

to 1.66 at mitigation. These results indicate that the mitigation measures that were put in 

place on 8th April helped to reduce the rate of spread of the disease. Other assessments 

showed, however, that the gains in controlling the disease were met at a considerable 

economic and social impact on the country. In Figure 4 the graph labelled mitigation 

dynamics shows the infection percentages associated with data up to the end of the 

mitigation period. This graph peaks at 9.2% thus indicating that the mitigation measures put 

in place from 9th April to 8th June had reduced the peak infection to a level more 

manageable for healthcare. Figure (3b) shows the observed and computed cumulative 

infection numbers and percentages during the mitigation period; the agreement is quite 

good. 
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(c) Relaxation Solutions 

 

For results involving the relaxation, computation is carried out from 13th March to 8th 

August. The objective of the computation is to find out whether the  inclusion of data during 

the relaxation period made any difference in the rate of transmission of the disease and the 

infection dynamics. Use is made of the parameters and initial conditions given in the 

relaxation column of Table 2. Computed values of  and  , are given, to 5 significant 

figures,  in the relaxation row of Table 3.  Also given are related parameters and results. The 

results indicate that the reproduction number increased by about 25% from 1.66 at mitigation 

to 2.07 at relaxation, thus showing that relaxation of mitigation measures led to an increased 

rate of transmission of the disease. Figure 3(c) shows the observed and computed 

cumulative infection numbers and proportions during the relaxation period; the agreement is 

good but not as well as in the previous two cases. In Figure 4 the graph labelled relaxation 

shows the infection percentages, associated with the relaxation period, which peak at about 

16.6%. The implication is that the lifting of mitigation measures on 8th June, increased the 

peak infection to a level that could put more pressure on healthcare facilities, although not as 

much as would have happened with unmitigated disease. These results indicate that lifting 

the mitigation measures on June 8th subsequently placed an increased disease burden on 

society despite the temporary relief from the adverse economic and social effects due to 

mitigation. Figure 4 shows that if mitigation measures were not lifted, the disease would 

virtually disappear by January 2021 but relaxation shifts the disease wave and makes it 

disappear in mid-2021. 

 

6.2 Results from modelling interventions 
 

In the previous subsection, we presented results based on the solution of the SIRD system 

of equations, in which interventions had taken place and we aimed to determine how much 

they affected the transmission rate, reproduction number, infection rates and other variables. 

In this subsection, we would like to solve the following two problems: 

 

 Given the magnitudes of the mitigation and relaxation measures, determine their 

effects on the disease dynamics, especially the positivity rates. 

 Given the positivity rate curve, determine the magnitudes of the mitigation and 

relaxation measures that could have resulted in the curve.  

 

A solution to both problems requires the application of the methods described in Section 5.  

It necessitates setting up scenarios hence the results are largely qualitative and yield only 

broad outcomes for use in the initial planning and further investigations. We make the 

following assumptions: 
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(i) The largest portion of intervention measures is put in place at the beginning of the 

intervention period, namely close to 8th April 2020 for mitigation and 8th June 2020 for 

relaxation. Inevitably, there will subsequently be minor adjustments to the interventions 

which, if they were significant enough, would be regarded as independent interventions in 

their own right. 
 
(ii) The effect of the intervention, resulting in the optimum values of the transmission rate 

and effective reproduction number, is not achieved immediately but takes some days, 

normally up to 21 days but mostly between 7 to 14 days. 
 
(iii) Once the optimum values of the transmission rate and effective reproduction number 

are achieved, they govern the disease dynamics till another intervention takes place, either a 

mitigation or a relaxation. 

 

6.2.1 Determination of positivity rates given intervention magnitudes 

 

A solution to the problem here requires information on the magnitudes of the intervention 

measures, hence appropriate values of the parameter c to be used in Equation (14). In case 

there is a good accounting of the factors that contribute to the disease transmission rate, and 

their relative effects, we can readily determine the parameter c as indicated in Section 5. If 

necessary, the parameter c can be determined by solving the SIRD model as done in 

Section 6.1. Ideally, this problem should be solved a priori, namely before any interventions 

are put in place, so that the outcomes can be used to plan for the interventions. After 

interventions have occurred, the problem can be solved to learn what action ought to have 

been taken.  
  
(a) Results from modelling mitigation 

 

As pointed out earlier, the first incident of the disease in Kenya was on 13th March 2020. If 

the disease was left unmitigated it would have spread as indicated in the blue baseline 

dynamics curve in Figure 4.  The infection would have peaked in late May 2020 and virtually 

disappeared by early October 2020. The associated parameters and quantities are indicated 

in the baseline row of Table 3. These values indicate that slightly over a quarter of the 

population would have been infected at the peak of the disease, a fact which would have 

placed a considerable burden on health facilities. Mitigation was consequently effected on 

8th April 2020 and had the effect of slowing down the spread of the disease.  

 

To study the effect of different mitigation strategies during the period 8th April to 8th June 

2020, we can develop scenarios by varying the parameter c in Equation (15).  Since the 

mitigation is on the baseline dynamics, the transmission rate up to the time of the mitigation, 

βb(t), must be the baseline transmission given in the baseline row of Table 3, namely, βb(t) = 

0.1845. Using this value of βb(t) in Equation (14), with m = 15, and drawing the curves 

associated with different values of c, we obtain Figure 5. For a given value of c the curve 
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shows the trajectory of the infection as a result of a one-time mitigation force on 8th April 

2020, with no other subsequent interventions. It can be seen that  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Infection percentages for various mitigation scenarios. 

 

the infection peaks reduce as the value of c increases and they tend to occur later, meaning 

that the more stringent the mitigation measures, the lower will be the peak infections but they 

will occur at a later time.  

 

Table 4 shows how varying the parameter c affects the transmission rate, the effective 

reproduction number, from Equation (16), and the  infection. It is noted that as c increases, 

the peak infection and the effective reproduction number decrease. Further increase shows 

that for c = 0.8, the peak infection is 1.2% and Re = 0.55 < 1, meaning that there is no 

disease spread. This situation represents taking mitigation action which is so drastic that the 

disease is suppressed; the consequences to society for such action can be grave and so 

disease suppression is not a practical option. Table 4 also gives the infection at the end of 

the mitigation period, namely 8th June 2020. It enables the planner, who on 8th April 2020 is 

proposing a 2-month mitigation action, to forecast the infection percent on 8th June 2020, 

depending on the force of the mitigation. 

 

 c 
% change 

in 
b

  
  

e
R  

% peak 

infection 

% infection 

8 June 

0 0 0.1845 2.76 27.1 24.1 

0.1 -10 0.1660 2.49 23.3 23.0 

0.2 -20 0.1476 2.21 19.1 18.7 

0.4 -40 0.1107 1.166 9.6 6.6 

0.6 -60 0.0738 1.11 1.3 1.2 

0.8 -80 0.0369 0.55 0.71 0.16 

 
Table 4: Scenarios involving changes in the parameter c under mitigation from baseline. The following 
values are used βb = 0.1845, Rb = 2.76, γ = 0.0518 and δ = 0.015 
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A question of interest is: Can we quantify the impact of the mitigation measures effected 

from 8th April to 8th June? To answer this question a priori we would have to estimate, 

before 8th April 2020, the value of the parameter c as described in Section 5. We can also 

answer this question a posteriori, namely, after 8th June 2020, by making use of the results 

in Section 6.1 where we solved the system of equations from the onset of the disease up to 

the end of the mitigation, namely, from 13th Mach 2020 to 8th June 2020. Table 2 shows 

that from the baseline period to the mitigation period the basic reproduction number 

decreased from 2.76 to the effective reproduction number of 1.66. This change represents a 

decrease of approximately 40% between the two periods. It is logical, therefore, to take c = 

0.4 as the mitigation parameter in Equation (14) and the trajectory of the infection would be 

the curve identified by 40% mitigation in Figure 5.  

 
(b) Results from modelling relaxation 

 

As a result of the adverse effects of mitigation, the government decided to relax some of the 

mitigation measures from 8th June to 8th August 2020. This is the period we regard as the 

“relaxation period” in our model; it is characterised by an increase in the transmission rate, 

reproduction number, and infection. If we have a good accounting of the relaxation factors 

that contribute to the disease transmission rate and can estimate their relative effects, we 

can determine the parameter c to be used in Equation (14), as described in Section 5; the 

values of c will be negative, since they imply an increase in transmission rate above 

reference values. The scenarios cannot, however, be based on the baseline dynamics; they 

must start from an appropriate mitigation scenario which ended on 8th June 2020. We have 

established in the previous paragraph that such a scenario corresponds to mitigation with c 

= 0.4. Consequently, to study the effect of different relaxation strategies from 9th June to 8th 

August 2020, we develop scenarios by varying the parameter c, taking into consideration the 

fact that the scenarios are dependent upon 40% mitigation , as shown in Figure 6. 

 

Since the relaxation is on the 40% mitigation of the baseline dynamics, the transmission rate 

up to the time of the relaxation, βb(t), must be the mitigation transmission corresponding to c 

= 0.4 in Table 4, namely, βb(t) = 0.1107. Using this value of βb(t) in Equation (14), with m = 

15, and drawing the curves associated with different values of c, we obtain Figure 6. For a 

given value of c the curve shows the trajectory of the infection as a result of a one-time 

relaxation force imposed, on 8th June 2020, upon a 40% mitigation force, with no other 

subsequent interventions. It is seen that the infection peak increases with decrease in c, or 

increase in its magnitude, and relaxation percentage.  
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                       Figure 6: Infection percentages for various relaxation scenarios on 40% mitigation. 

 

Table 5 shows how varying the parameter c affects the transmission rate, the effective 

reproduction number, from Equation (16), and the infection. It shows that continued 

decrease in c, or increase in relaxation percentage, leads to a situation where the effective 

reproduction number becomes 2.99 (for c = -0.8 or 80% relaxation) and thus exceeds the 

basic reproduction number of 2.76. This reflects the fact that rapid lifting of mitigation 

measures can result in an outbreak of faster spreading covid-19, as has been reported in 

several countries since the outbreak of the disease. Public health advice is that mitigation 

measures should not be relaxed too rapidly. Table 5 also gives the infection at the end of the 

relaxation period, namely 8th August 2020; it enables the planner, who on 8th June 2020 is 

proposing a 2-month relaxation action, to forecast the infection percent on 8th August 2020, 

depending on the force of the relaxation. 

 

 
c 

% change 

in 
b

  

 

  

 

e
R  

% peak 
infection 

% infection 
8 August 

0 0 0.1107 1.66 9.6 6.6 

-0.1 10 0.1218 1.82 11.1 7.7 

-0.25 25 0.1384 2.07 13.6 8.8 

-0.4 40 0.1550 2.32 16.2 9.2 

-0.6 60 0.1771 2.65 19.5 9.1 

-0.8 80 0.1993 2.99 22.6 8.5 

 
Table 5: Scenarios involving changes in the parameter c under relaxation. The following values are 
used βb = 0.1107, Rb = 1.660, γ = 0.0518 and δ = 0.015. 

 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted March 24, 2021. ; https://doi.org/10.1101/2021.03.17.21253626doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.17.21253626


22 | P a g e  

  

A question similar to what was raised in the mitigation assessment is the following: Can we 

quantify the impact of the relaxation measures effected from 8th June to 8th August? To 

answer this question a priori we would have to estimate, before 8th June 2020, the value of 

the parameter c as described in Section 5. We can also answer this question a posteriori, 

after 8th August 2020, by making use of the results in Section 6.1 (c), where we solved the 

system in Equation (14) from the onset of the disease, namely 13 th March 2020, through the 

mitigation period, till the end of the relaxation period, namely, 8 th August 2020. Table 2 

shows that from the end of the mitigation period to the end of the relaxation period, the 

effective reproduction number increases from 1.66 to 2.07. This change represents an 

increase of approximately 25% between the two periods and hence it is logical to take c = 

−0.25 as the relaxation parameter in Equation (14) and the trajectory of the infection would 

be the curve identified by 25% relaxation in Figure 6. 

 

(c ) Combination of mitigation and relaxation effects 
 
To assess the effect of interventions during the first wave of COVID-19 in Kenya, we trace 

the trajectory of infection, taking into consideration the impact of the mitigation and relaxation 

measures implemented by the Kenya government. The trajectory consists of three distinct 

parts as indicated hereafter. 
 
Baseline trajectory: This consists of the curve labelled “No mitigation (c=0)” in Figure 5. 

This curve is reproduced in Figure 7 (black curve) and is shown in two parts: the continuous 

portion, from 13th March to 8th April 2020 shows the percent infection trajectory during the 

baseline period and the dotted portion, after 8th April, indicates the projected trajectory in the 

absence  

of further interventions. As we shall see later, this projected trajectory is not followed due to 

subsequent mitigation and relaxation actions. 

 
 
Mitigation trajectory: This consists of the curve labelled “40% mitigation (c=0.4)” in Figure 

5. This curve is reproduced in Figure 7 (blue curve) and is shown in two parts: the 

continuous portion, from 9th April to 8th June 2020 shows the percent infection trajectory 

during the mitigation period and the dotted portion, after 8th June, indicates the projected 

trajectory in the absence of further interventions. We see later that this projected trajectory is 

also not followed due to subsequent relaxation action. 

 

Relaxation trajectory: This consists of the curve labelled “25% relaxation (c=-0.25)” in 

Figure 6. This curve is reproduced in Figure 7 (red curve) and is shown in two parts: the 

continuous portion, from 9th June to 8th August 2020 shows the percent infection trajectory  

during the relaxation period and the dotted portion, after 8th August, indicates the projected 

trajectory in the absence of further interventions. We see later that this projected trajectory is 

followed until the second COVID-19 wave emerges in early September 2020. 
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Figure 7: Infection percentages for different mitigation or relaxation dynamics. The red curve shows 

infection trajectory arising from 40% mitigation followed by 25% relaxation, the blue curve shows the 

infection trajectory arising from mitigation dynamics while the black curve shows infection trajectory 

arising from baseline dynamics. 
  
Combined trajectory:  Combining the continuous portions of the curves in Figure 7, yields 

the trajectory of the infection from the onset of the disease to the end of the relaxation 
period, namely 8th August 2020..  The result is in Figure 8, where the 7-day moving 
averages are given and are compared with observed values. The projected trajectory is  
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 8: The 7-day moving average of observed and computed percent infections combining 

mitigation and relaxation strategies. 

 
extended to the beginning of the 2nd wave in early September, for explanations given in the 
preceding paragraph.  It can be seen that the predicted percent infection trajectory 
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reasonably matches the observed values during the first wave of COVID-19 till early 
September when the second wave commences.  The extension of the projected trajectory 
beyond the beginning of the 2nd wave indicates that had there not been further events that 
contributed to a second wave surge, COVID-19 infections would have reduced to 
insignificant levels by January 2021. 
 
6.2.2 Determination of intervention magnitudes given positivity rates 

 

In this section, the observed positivity curve is given and we seek to estimate the mitigation 
and relaxation values that could have yielded such a curve.  The problem can be solved only 
a posteriori, and it will enable assessment of the interaction between interventions and 
disease dynamics.  The approach involves generating a suitable surface envelope around 
the curve and using the trajectory of the midpoint of the envelope to reflect the computed 
positivity curve.  The concept of envelopes is  applied to numerous phenomena, including 
 

robotics and kinematics, motion involving collision avoidance, gear transmission design [58 – 

60].  To start the process, we require a suitable initial surface around the curve that is not too 

large, for computational efficiency.  The surface is bounded by curves defined by constant 

values of mitigation and relaxation percentages. We have already seen that hard lockdown 

was defined as mitigation of 44% and moderate lockdown as mitigation of 25% [23]; it is 

therefore reasonable to start with mitigation percentages in the range (25 , 50).  Relaxation 

techniques applied after mitigation are designed to increase the transmission rate, preferably 

to 80% - 90% of the pre-mitigation transmission.  If we assume that the relaxation increases 

the transmission to 90% of the pre-mitigation level then from Equation (14), we conclude that 

relaxation percentages will be in the range (20, 80). To identify the initial width of the 

envelope, we choose a fixed relaxation percentage and draw curves of interventions 

consisting of mitigation values in the range (25, 50), or a suitable subset of it, followed by the 

selected relaxation.  The curves all start at the same point but, as time progresses, they 

begin to diverge till two curves appear on either side of the observed positivity rate; this 

enables us to define the initial left and right boundaries of the envelope. Further 

configurations involving intermediate mitigation percentages and other relaxation 

percentages can be made, if necessary, to enable identification of an initial envelope that is 

closer to the positivity rate curve.   

 

To generate the envelope, we considered the time series values of infection percentages 

obtained from mitigation and relaxation percentages selected above.  From these time 

series, maximum and minimum infection percentages are obtained at each time point and 

they are taken as the boundaries of the envelope, as shown in the final optimized envelope 

in Figure 9.  The midpoint of the envelope trajectory, shown in red, reflects the computed 

positivity rate curve, with a mitigation of 42.5% and relaxation of 26.0% as averaged from 

values at the midpoints of the family of envelopes. Solution of the SIRD model in Section 6.1 

yielded mitigation of 40% and relaxation of 25%. Although the approach differed significantly 

from the current one, the two methods yield intervention parameters with less than 10% 

relative error from each other and illustrates significant consistency in the findings. 
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Figure 9. Optimized envelope around the positivity rate curve, with computed positivity curves from 
the envelope midpoint  

 
7 Conclusions 
 

We have developed a new numerical scheme for determining initial estimates of the COVID-
19 parameters in the SIRD model. The parameters can be refined by a simple search of the 
minimum point, instead of more complex procedures.  The results yield values of R0 which 
are comparable with other numerical schemes, thus validating our approach.  We focused 
on the case where the death rate was known and there was a need to estimate only the 
recovery rate; the method can, however, be extended readily to estimate the death and 
recovery rates.  By carrying out computations from the onset of the disease to the end of 
intervals that coincide with major intervention measures, we can quantify the effect of the 
interventions. There is a need for further analysis to determine the optimum grid outlay.  
 
The mathematical model for interventions takes into account mitigation, which results in 

transmission rate decrease and in relaxation, which results in a transmission rate increase, 

hence in spikes. The model yields an infection curve, subject to intervention measures, that 

closely follows the observed trends. The process depends on a parameter, whose value is 

positive for mitigation and negative for relaxation.  This parameter should be computed a 

priori, if the method is to be used as a basis for decision-making in order to enact guidelines 

commensurate with the level of planned interventions. The computation would require a 

multidisciplinary team of researchers drawn from diverse backgrounds. In determining a 

surge in the transmission, it should not be assumed that the spike is purely a result of the 

government having lifted some mitigation measures. It is often a result of society violating 

the laid down mitigation guidelines and, in some cases, openly protesting and against 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted March 24, 2021. ; https://doi.org/10.1101/2021.03.17.21253626doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.17.21253626


26 | P a g e  

  

lockdowns as a result of “COVID-fatigue”. Further investigation should be carried out to 

determine how the method here, and that in the previous paragraph, can be extended to 

second and subsequent waves. 
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